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Abstract In this paper we present an elementary proof of a classical sufficient condition
for free problems in the calculus of variations using an extension of the direct sufficiency
method, originating in the work of G. Leitmann (Int. J. NonLin. Mech. 2, 55–59 (1967)),
found in D.A. Carlson (J. Optim. Theory Appl. 114, 345–362 (2002)).
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1 Introduction

Much of the theory of the calculus of variations, both past and present, focuses on the search
for necessary conditions for optimality. For the most part these results have changed very little
through the years, except for weakening smoothness conditions, differentiability notions, and
the inclusions of varieties of constraints. Indeed, the seminal work on nonsmooth calculus
of variations in the 1970s clearly indicates that the classical theory (properly interpreted of
course) encompassed much of the modern theory, modulo the introduction of nonsmooth-
ness. Necessary conditions however only provide candidates for solution and many examples
exist where solutions of the necessary conditions are not optimal. The difficulty was known
quite early in the history of the subject and it was well known to Lagrange and his contempo-
raries that the solution to the problem rested with the nonnegative definiteness of the second
variation. Numerous attempts at characterizing the second variation are reported in the book
by Todhunter [12], a historical treatise which discusses the major works in the calculus of
variations in the first half of the nineteenth century. After the publication of Todhunter’s
treatise, the work of Weierstrass in the calculus of variations was presented. It is here that
for the first time the role of weak and strong neighborhoods was recognized and the first
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distinctions between weak and strong minimizers was made. It is also here that the first
general, systematic theory of sufficient conditions was initiated and fields of extremals were
rigorously discussed. Of course, earlier work by Jacobi and Hamilton in the 1830s laid the
groundwork for Weierstrass’s contributions. Weierstrass’s work was followed by the work of
Hilbert, Bolza, Carathéodory, and others in the late nineteenth and early twentieth centuries.

Although there has been a number of excellent textbooks written for the calculus of varia-
tions that include all aspects of the theory, most university courses, due to the time constraints
of one term, primarily discuss necessary conditions and give little or no information regard-
ing sufficient conditions. In this paper our goal is to provide an elementary approach to these
sufficient conditions and show that they may be proved via Leitmann’s direct sufficiency
method. This direct method, first presented in Leitmann [9], considers coordinate transfor-
mations to transform the original problem into one which can be solved more easily— often
by inspection. The key feature of the method is a fundamental identity which relates the
two problems. In the late 1990s, Leitmann returned to this method and presented a series
of papers through which he and his colleagues were able to broaden the class of problems
considered to infinite horizon optimization problems and to the study of open-loop games.
In Carlson [3] (see also [11]) an extension of Leitmann’s method was made that incorporated
Carathéodory’s method of equivalent problems and in the process expanded the utility of
the method. Further updates and insights to the method subsequently followed in a series of
papers due to both authors (see, e.g., [4–7]).

The outline of our paper is that we first introduce the problem we wish to consider and
review the classical necessary conditions. In the second section we discuss fields of extremals.
The third section briefly summarizes the direct sufficiency method we wish to use. Next we
give a new proof of a classical sufficiency condition found in the calculus of variations. We
conclude our paper by indicating further directions to explore in exploiting our method to
broader classes of problems.

2 The free problem of lagrange and basic necessary conditions for optimality

We consider the simplest problem in the calculus of variations, namely that of minimizing
an integral functional

J (x(·)) =
∫ b

a
L(t, x(t), ẋ(t))dt (1)

over all admissible trajectories (see below) x(·): [a, b] → R that are continuous on [a, b]
with piecewise continuous derivatives, (i.e., x(·) ∈ PC1[a, b]) satisfying a set of fixed end
conditions

x(a) = xa and x(b) = xb. (2)

Regarding the integrand L(·, ·, ·) assume that A ⊂ [a, b] × R
2 is a given open set and that

L(·, ·, ·): A → R is continuous and such that for each t ∈ [a, b] we have (x, p) → L(t, x, p)
is twice continuously differentiable on A(t) = {(x, p) ∈ R

2 : (t, x, p) ∈ A} and that for
each (t, x) ∈ [a, b]× R we have that p → L(t, x, p) is a convex function on A(t, x) = {p :
(t, x, p) ∈ A}. With this notation we have the following definition.

Definition 1 A function x(·): [a, b] → R is called an admissible trajectory if x(·) is contin-
uous with piecewise continuous derivatives on [a, b], (t, x(t), ẋ(t)) ∈ A, it satisfies the end
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conditions (2), and J (x(·)) is finite. The set of all admissible trajectories will be denoted by
�.

For brevity, we refer to the problem of minimizing the functional (1) over the set of
admissible trajectories � as problem (P). We now recall the following classical first order
necessary conditions for (P), which are readily found in almost any textbook on the calculus
of variations (see for example Ewing [8]).

Theorem 1 (Euler–Lagrange) If x∗(·) ∈ � is at least a weak local minimizer of (1), then
the Euler-Lagrange equation

d

dt

∂L

∂p

(
t, x∗(t), ẋ∗(t)

) = ∂L

∂x

(
t, x∗(t), ẋ∗(t)

)
, t ∈ [a, b] (3)

holds, where if t ∈ [a, b] is a point of discontinuity for ẋ∗(·) the above equation holds in the
usual sense of one-sided limits.

In this paper we show how to obtain elementary proofs of some of a classical sufficient
condition for free problems in the calculus of variations using an extension of the direct
sufficiency method, originating in the work of Leitmann [9], found in Carlson [3].

Theorem 2 (Legendre) If x∗(·) ∈ � is at least a weak local minimizer of (1), then

∂2 L

∂p2 (t, x∗(t), ẋ∗(t)) ≥ 0, t ∈ [a, b]. (4)

Theorem 3 (Weierstrass) If x∗(·) ∈ � is either a strong local or a global minimizer of (1),
then

E(t, x∗(t), ẋ∗(t), q) = L(t, x∗(t), q)− L(t, x∗(t), ẋ∗(t))

−(q − ẋ∗(t)) ∂L

∂p
(t, x∗(t), ẋ∗(t)) ≥ 0 (5)

for all t ∈ [a, b] and all q ∈ R such that (t, x∗(t), q) ∈ A.

To present the last necessary condition we introduce the accessory minimum problem. To do
this suppose that x∗(·) ∈ � is a smooth (i.e., continuously differentiable) minimizer of (1)
and consider the problem of minimizing the functional

I (η(·)) =
∫ b

a

[
∂2 L

∂x2 (t, x∗(t), ẋ∗(t))η(t)2 + 2
∂2 L

∂x∂p
((t, x∗(t), ẋ∗(t))η(t)η̇(t)

+ ∂2 L

∂p2 (t, x∗(t), ẋ∗(t))η̇(t)2
]

dt (6)

over all η(·) ∈ PC1[a, b] satisfying the end conditions

η(a) = 0 and η(b) = 0. (7)

With regards to this accessory minimum problem we have the following definition.

Definition 2 If u: [a, c] → R satisfies the Euler–Lagrange equation for the accessory mini-
mum problem and the end conditions u(a) = u(c) = 0 with u(t) �= 0 for t ∈ (a, c) we say c
is a conjugate value to a and that the point (c, x∗(c)) is called a conjugate point to the initial
point (a, x∗(a)) of x∗(·).
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Theorem 4 (Jacobi) If x∗(·) ∈ � is a smooth minimizer of (1) and if the Legendre necessary
condition holds with strict inequality (i.e., the so-called strengthened Legendre condition) on
[a, b] then there is no value c ∈ (a, b) that is conjugate to a.

This concludes our brief reminder of the classical necessary conditions. In the next section
begin our discussion of sufficient conditions.

3 Fields of extremals

The notation and terminology for a field of extremals is not standard in the classical theory.
The approach we adopt here is found in Bolza [1] beginning with the following definition.

Definition 3 Let ξ(·, ·): [a, b]×R → R be a twice continuously differentiable function. We
say that ξ(·, ·) is a family of extremals for problem (P) if for each constant β ∈ R one has
that the function t → ξ(t, β) satisfies the Euler–Lagrange equations (3), namely

d

dt

∂L

∂p

(
t, ξ(t, β),

∂ξ

∂t
(t, β)

)
= ∂L

∂x

(
t, ξ(t, β),

∂ξ

∂t
(t, β)

)
, t ∈ [a, b], (8)

and that (t, ξ(t, β), ∂ξ
∂t (t, β)) ∈ A for t ∈ [a, b].

Remark 1 In the above definition, the boundary conditions of problem (P) are not necessarily
satisfied.

To solve (P), one naturally makes an effort to solve one or more of the corresponding nec-
essary conditions to obtain candidates of optimality. For the case considered here, these
necessary conditions are described in the previous section. Therefore, we assume from now
on that x∗(·) satisfies the Euler–Lagrange equations (3) as well as the fixed end conditions
(2). Now suppose we are given a family of extremals for which x∗(·) = ξ(·, β∗) for some
value β = β∗. For k > 0 let Sk = {(t, x) = (t, ξ(t, β)): (t, β) ∈ [a, b] × [β∗ − k, β∗ + k]}.
With this notation we have the following definition.

Definition 4 The set Sk is called a field of extremals about the trajectory x∗(·) if for every
point (t, x) ∈ Sk there exists exactly one β ∈ [β∗ − k, β∗ + k] such that (t, x) = (t, ξ(t, β)).

Remark 2 Observe that the set Sk can also be viewed as a “strip” in the (t, x)-plane swept out
by the extremals t → ξ(t, β) as β increases from β∗ − k to β∗ + k. Moreover, the condition
that Sk be a field means that there exists a single-valued function ψ(·, ·) such that for each
(t, x) ∈ Sk one has

β = ψ(t, x),

x = ξ(t, ψ(t, x))

and

|ψ(t, x)− β∗| ≤ k.

With regards to the above remark Bolza presents the following theorem which is a direct
consequence of the implicit function theorem.

Theorem 5 For a given family of extremals suppose there exists β∗ such that x∗(·) =
ξ(·, β∗). Then if

∂ξ

∂β
(t, β∗) �= 0 for all t ∈ [a, b]

there exists k > 0 sufficiently small so that Sk is a field of extremals about x∗(·).
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4 Leitmann’s direct method

In 1967 Leitmann [9] introduced a direct sufficiency method that involved a transformation
of coordinates which permitted him to deduce the solution of a calculus of variations problem
by inspection. During the 1990s, he revived this method extending it to variational games and
applying it to a number of problems arising in economic modeling. In Carlson [3], Leitmann’s
method was compared and contrasted with Carathéodory’s notion of equivalent variational
problem and finally combined into a new and improved version of Leitmann’s direct method.
It is this improved version which we now describe. To do this we let x = z(t, x̃) be a trans-
formation of class C1 having a unique inverse x̃ = z̃(t, x) for all t ∈ [a, b] such that there is
a one-to-one correspondence x(t) ⇔ x̃(t) for all admissible trajectories x(·) satisfying the
boundary conditions (2) and for all x̃(·) satisfying

x̃(a) = z̃(a, xa) and x̃(b) = z̃(b, xb). (9)

Observe that if x(·) ∈ � then we have that there exists a trajectory x̃(·) satisfying (9) and
such that

(t, x(t), ẋ(t)) =
(

t, z(t, x̃(t)),
∂z

∂t
(t, x̃(t))+ ∂z

∂ x̃
(t, x̃(t)) ˙̃x(t)

)
for t ∈ [a, b].

This means that the trajectories x̃(·) are such that (t, x̃(t), ˙̃x(t)) ∈ Ã holds for all t ∈ [a, b]
in which

Ã =
{
(t, x̃, p̃) :

(
t, z(t, x̃),

∂z

∂t
(t, x̃)+ ∂z

∂ x̃
(t, x̃) p̃

)
∈ A

}
. (10)

Now let L̃(·, ·, ·): Ã → R be another integrand that enjoys the same properties as L(·, ·, ·)
and consider the problem (P̃) of minimizing the integral

J̃ (x̃(·)) =
∫ b

a
L̃(t, x̃(t), ˙̃x(t)) dt

over all trajectories x̃(·) ∈ PC1[a, b] satisfying the end conditions (9) and satisfying

(t, x̃(t), ˙̃x(t)) ∈ Ã

for t ∈ [a, b]. With this notation we have the following definition.

Definition 5 We say the problems (P) and (P̃) are equivalent if whenever x∗(·) is a minimizer
of (P) the function x̃∗(·) = z̃(·, x∗(·)) is a minimizer of (P̃), and conversely.

We now give Leitmann’s direct sufficiency method.

Theorem 6 Let z(·, ·), L(·, ·, ·) and L̃(·, ·, ·) satisfy the hypotheses described above. If there
exists a C1 function G(·, ·): [a, b] × R → R such that for all admissible trajectories
x(·): [a, b] → R for (P) the functional identity

L(t, x(t), ẋ(t))− L̃(t, x̃(t), ˙̃x(t)) = d

dt
G(t, x̃(t)) (11)

holds for all t ∈ [a, b], then the problems (P) and (P̃) are equivalent.

Proof Leitmann [11]. 	


123



46 J Glob Optim (2008) 40:41–50

Two immediate and useful corollaries are the following.

Corollary 1 The existence of G(·, ·) in (11) implies that the following identity holds for
(t, x̃, p̃) ∈ (a, b)× R × R:

L

(
t, z(t, x̃),

∂z(t, x̃)

∂t
+ ∂z(t, x̃)

∂ x̃
p̃

)
− L̃(t, x̃, p̃)

≡ ∂G(t, x̃)

∂t
+ ∂G(t, x̃)

∂ x̃
p̃. (12)

Corollary 2 The left-hand side of the identity, (12) is linear in p̃, that is, it is of the form,

θ(t, x̃)+ ψ(t, x̃) p̃

and

∂G(t, x̃)

∂t
= θ(t, x̃) and

∂G(t, x̃)

∂ x̃
= ψ(t, x̃)

on [a, b] × R.

Remark 3 The utility of the above theorem rests in being able to choose not only the trans-
formation z(·, ·) but also the integrand L̃(·, ·, ·). In the next section we use this direct method
to give an elementary proof of a classical sufficient condition for the problems considered.
We further observe that the condition that p → L(t, x, p) is convex is not required to obtain
the above results.

Remark 4 The above theorem is an extension of Leitmann’s original idea and includes it as
a special case by taking L̃(·, ·, ·) = L(·, ·, ·); see [10]. In addition, it includes the notion of
equivalent variational problem found in Carathéodory’s work (e.g., see Carathéodory’s book
[2]) by taking z(·, ·) to be the identity transformation (i.e., z(t, x̃) ≡ x̃). We further remark
that these ideas are also closely related to the canonical transformations found in classical
mechanics originally investigated by Hamilton and Jacobi in the 1830s.

5 The classical sufficient conditions

We begin by letting ξ(·, ·) be a family of extremals as defined in Definition 3 and letting
x∗(·) be an extremal satisfying the conditions:

(a) The transformation x = ξ(t, β) is of class C2 with a unique inverse β = ξ̃ (t, x).
(b) There exists a constant number β∗ ∈ R such that x∗(t) = ξ(t, β∗) for t ∈ [a, b].
Remark 5 A family of extremals satisfying the conditions indicated above defines a one-to-
one correspondence between the admissible trajectories of (P) and a set of functions x̃(·)
satisfying the boundary conditions

x̃(a) = ξ̃ (a, xa) = β∗ and x̃(b) = ξ̃ (b, xb) = β∗.

To see this we notice that if x(·) is admissible for the original problem then we have that
the function x̃(·): [a, b] → R defined by x̃(t) = ξ̃ (t, x(t)) satisfies the fixed end conditions

x̃(a) = ξ̃ (a, xa) and x̃(b) = ξ̃ (b, xb).
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Further, since β∗ = ξ̃ (t, x∗(t)) for all t ∈ [a, b] it follows immediately that β∗ =
ξ̃ (a, xa) = ξ̃ (b, xb) as desired. Thus, as we will see below, a family of extremals satisfy-
ing the above makes a good candidate for a transformation to which the direct method may
applied.

We begin with the following technical lemma.

Lemma 1 Let L(·, ·, ·) satisfy the hypotheses of Sect. 2 and let ξ(·, ·) be a family of extremals
as defined in Definition 3. Then there exists a continuously differentiable function G(·, ·):
[a, b] × R → R and a continuous function γ (·, ·, ·): [a, b] × R × R → [0, 1] such that

L

(
t, ξ(t, β),

∂ξ

∂t
(t, β)+ ∂ξ

∂β
(t, β) p̃

)
− L̃(t, β, p̃) = ∂G

∂t
(t, β)+ ∂G

∂β
(t, β) p̃ (13)

in which L̃(·, ·, ·): [a, b] × R × R → R is given by

L̃ (t, β, p̃) = 1

2

∂2 L

∂p2

(
t, ξ(t, β),

∂ξ

∂t
(t, β)+ γ (t, β, p̃)

∂ξ

∂β
(t, β) p̃

)(
∂ξ

∂β
(t, β)

)2

p̃2. (14)

Proof We begin by applying Taylor’s theorem with remainder to p → L(t, ξ(t, β), p).

Specifically we have that for each t ∈ [a, b], β ∈ R, and p̃ ∈ R there exists a constant
γ (t, β, p̃) ∈ [0, 1] such that

L

(
t, ξ(t, β),

∂ξ

∂t
(t, β)+ ∂ξ

∂β
(t, β) p̃

)

= L

(
t, ξ(t, β),

∂ξ

∂t
(t, β)

)
+ ∂L

∂p

(
t, ξ(t, β),

∂ξ

∂t
(t, β)

)
∂ξ

∂β
(t, β) p̃ (15)

+1

2

∂2 L

∂p2

(
t, ξ(t, β),

∂ξ

∂t
(t, β)+ γ (t, β, p̃)

∂ξ

∂β
(t, β) p̃

) (
∂ξ

∂β
(t, β)

)2

p̃2

= L

(
t, ξ(t, β),

∂ξ

∂t
(t, β)

)
+ ∂L

∂p

(
t, ξ(t, β),

∂ξ

∂t
(t, β)

)
∂ξ

∂β
(t, β) p̃ + L̃ (t, β, p̃) .

That is we have,

L

(
t, ξ(t, β),

∂ξ

∂t
(t, β)+ ∂ξ

∂β
(t, β) p̃

)
− L̃(t, β, p̃)

= L

(
t, ξ(t, β),

∂ξ

∂t
(t, β)

)
+ ∂L

∂p

(
t, ξ(t, β),

∂ξ

∂t
(t, β)

)
∂ξ

∂β
(t, β) p̃. (16)

Now define the two functions θ(·, ·): [a, b] × R → R and ψ(·, ·): [a, b] × R → R by the
formulas,

θ(t, β) = L

(
t, ξ(t, β),

∂ξ

∂t
(t, β)

)
and ψ(t, β) = ∂

∂p
L

(
t, ξ(t, β),

∂ξ

∂t
(t, β)

)
∂ξ

∂β
(t, β)

and notice that we may write (16) as

L

(
t, ξ(t, β),

∂ξ

∂t
(t, β)+ ∂ξ

∂β
(t, β) p̃

)
− L̃(t, β, p̃) = θ(t, β)+ ψ(t, β) p̃.

Therefore to achieve our result it suffices to prove that there exists a function G(·, ·):
[a, b] × R → R such that

θ(t, β) = ∂G

∂t
(t, β) and ψ(t, β) = ∂G

∂β
(t, β).
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From a well known result of classical analysis a necessary and sufficient condition for this
to occur is to show that

∂

∂β
θ(t, β) = ∂2G

∂β∂t
(t, β) = ∂2G

∂t∂β
(t, β) = ∂

∂t
ψ(t, β).

To see that this is the case we observe that since ξ(·, ·) is a family of extremals we have

∂

∂β
θ(t, β) = ∂L

∂x

(
t, ξ(t, β),

∂ξ

∂t
(t, β)

)
∂ξ

∂β
(t, β)

+∂L

∂p

(
t, ξ(t, β),

∂ξ

∂t
(t, β)

)
∂2ξ

∂β∂t
(t, β)

= ∂

∂t

[
∂L

∂p

(
t, ξ(t, β),

∂ξ

∂t
(t, β)

)]
∂ξ

∂β
(t, β)

+∂L

∂p

(
t, ξ(t, β),

∂ξ

∂t
(t, β)

)
∂2ξ

∂β∂t
(t, β)

= ∂

∂t

[
∂

∂p
L

(
t, ξ(t, β),

∂ξ

∂t
(t, β)

)]
∂ξ

∂β
(t, β)

+ ∂

∂p
L

(
t, ξ(t, β),

∂ξ

∂t
(t, β)

)
∂2ξ

∂t∂β
(t, β)

= ∂

∂t
ψ(t, β),

where we have used the fact that the family of extremals is twice continuously differentiable
so that we know

∂2ξ

∂t∂β
(t, β) = ∂2ξ

∂ξ∂t
(t, β).

From this we can conclude that there exists a function G(·, ·): [a, b] × R → R such that

L

(
t, ξ(t, β),

∂ξ

∂t
(t, β)+ ∂ξ

∂β
(t, β) p̃

)
− L̃(t, β, p̃) = ∂G

∂t
(t, β)+ ∂G

∂β
(t, β) p̃.

That is, Eq. 13 holds. 	

Theorem 7 In addition to the hypotheses given in Sect. 2, assume that the function p →
L(t, x, p) is convex on A(t, x) = {p ∈ R: (x, p) ∈ A(t)}. Further let x∗(·) be an admissible
trajectory for problem (P) which satisfies the Euler–Lagrange equation (3) and assume that
there exists a family of extremals, ξ(·, ·) satisfying (a) and (b). Then x∗(·) is a solution of (P).

Proof Using the field of extremals, ξ(·, ·) define the transformations z(·, ·): Sk → R by
z(t, x̃) = ξ(t, x̃). Observe that by (a) this transformation is C2 and invertible with inverse
z̃(·, ·) given by z̃(t, x) = ξ̃ (t, x). Thus, this transformation defines a one-to-one correspon-
dence between the admissible trajectories of problem (P) and the trajectories x̃(·): [a, b] → R

defined, for each admissible trajectory x(·) for (P), by x̃(t) = z̃(t, x(t)). Moreover, as
observed in Remark 5, we also have that each such trajectory x̃(·) satisfies the fixed endpoint
conditions

x̃(a) = β∗ and x̃(b) = β∗.
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Moreover, as a result of Lemma 1 we have for each admissible trajectory x(·) for (P) and
corresponding trajectory x̃(·) = z̃(·, x(·)) that

L(t, x(t), ẋ(t))− L̃(t, x̃(t), ˙̃x(t)) = L

(
t, z(t, x̃(t)),

∂z

∂t
(t, x̃(t))+ ∂z

∂ x̃
(t, x̃(t)) ˙̃x(t)

)

−L̃(t, x̃(t), ˙̃x(t))
= ∂G

∂t
(t, x̃(t))+ ∂G

∂ x̃
(t, x̃) ˙̃x(t)

= d

dt
G(t, x̃(t)),

which is precisely the condition required in the Theorem 6. Therefore, by applying Theorem
6 we know that the minimizers of problem (P) are in one-to-one correspondence with the
minimizers of the problem (P̃) consisting of minimizing the integral functional

J̃ (x̃(·)) =
∫ b

a
L̃(t, x̃(t), ˙̃x(t)) dt,

in which L̃(·, ·, ·) is given by (14), over all piecewise continuously differentiable trajectories
x̃(·) satisfying (t, x̃(t), ˙̃x(t)) ∈ Ã for all t ∈ [a, b] (where Ã is given by (10)), satisfying the
fixed endpoint conditions

x̃(a) = β∗ and x̃(b) = β∗.

Observe that since L(·, ·, ·) is convex in its last argument we have (t, x̃, p̃) → L̃(t, x̃, p̃)
is nonnegative and assumes the value zero whenever p̃ = 0. This means that x̃∗(t) ≡ β∗
is a minimizer of (P̃). Thus an application of the direct method gives us that the trajectory
x∗(·) ≡ ξ(t, β∗) is an optimal solution for (P) as desired. 	

Remark 6 The minimum in the above theorem is a strong local minimum and becomes a
global (absolute) minimum whenever Sk is the infinite strip [a, b] × R.

Remark 7 It is possible that the auxiliary problem has additional minimizers. In particular,
it is possible that there exists a nonconstant trajectory x̃(·) that is admissible for (P̃) such that
L̃(t, x̃(t), ˙̃x(t)) ≡ 0 on [a, b]. For example, this would be true if one had

∂z

∂ x̃
(t, x̃(t)) = 0 for all t ∈ [a, b].

What is important is that the constant trajectory x̃∗(t) ≡ β∗ is indeed a minimizer.

6 Conclusions

In this paper we have used Leitmann’s direct sufficiency method to give a new elementary
proof of a classical sufficient condition in the Calculus of Variations. Additionally, it is clear
that the fundamental result, Theorem 6, includes the basic ideas of canonical transformations
and the notion of equivalent variational problems as defined in Carathéodory [2]. Some inter-
esting questions remain open. The first is to determine if this approach can be applied to an
example in which the L̃(·, ·, ·) is not “quadratic-like.” This would genuinely show that this
approach leads to something new and extends further than the classical field theory. A second
question would be that of generalizing the approach to include nonsmoothness either in the
transformations or in the integrands. Other questions would be those of including constraints,
extensions to optimal control, etc.
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